Porting Algorithms to Accelerators

Charles Leggett

US ATLAS HPC Meeting
September 26 2019

The Challenge (Part)

- ATLASPreliminary

| CPU resource needs

~ = 2017 Computing model

L2018 estimates:
- v MC fast calo sim + standard reco

| * MC fast calo sim + fast reco
|« Generators speed up x2

~— Flat budget model
= (+20%l/year)

2018 2020 2022 2024 2026 2028 2030 2032

Year

» Tracking combinatorics begin to

» \We need enormously more compute 3
power for HL-LHC than we did for Run | : W
and |l 2 0

« We can survive Run lll with the current :
environment S 60
* We can't survive in Run IV % 40
2
» Lots of simulation, larger events due to 20
much higher multiplicity

0

E SOOZ_IA'II'L.IAS“: éinl'lullatilor; F;rel[in';ine‘lrs; | I.I_:

'{,._j 250; ITk Inclined Duals, tt events _f

Qo - [0 Total ID Run 2 Reconstruction

§ c00] B Do recosincten | E

i’; 150; Z iln:t;?::ut?r:::;g:l (Run 2) . -
% 1005_ mbiguity Resolution (|)‘...-’ s :—: dominate at

s0 "‘._....-----_:'.:‘.‘.::::::'-""""jﬂ =

Oz_'age‘:%':'gzztiii}i'; """""""" | o e

0 50 100 150 200

high

C. Leggett

2019-09-26

|| The Challenge (Part)

> |n the next generation of supercomputers we see extensive use of accelerator technologies

* Oak Ridge: Summit (2018) LLNL: Sierra (2018)
* 4608 IBM AC922 nodes w/ 2x Power9 CPU « 4320 IBM AC922 nodes w/ 2x Power9 CPU
« 3x NVIDIA Volta V100 + NVLink / CPU « 2x NVIDIA Volta V100 + NVLink / CPU
» LBL: NERSC-9 "Perlmutter" (2020) Argonne: Aurora A21 (2021)
« AMD EPYC "Milan" x86 only nodes + * Intel Xeon CPU + Intel X°/gen12 GPU + Optane
mixed CPU / "next gen" NVidia GPU
* Oak Ridge: Frontier (2021) . Tsukuba: Cygnus (2020)
¢l enelieg - 2x Intel Xeon 6162+ 4x NVidia V100 GPU

* AMD EPYC CPU + 4x AMD “Instinct” GPU + 2x CPU + 4x GPU + 2x Intel Stratix FPGA

e _ ~\) |
- Commercial clouds: Japan: Fugaku (2021)
« Brainwave / Azure FPGA * manycore ARM A64fx (48+2)
- Google Cloud TPU - integrated "SVE" 512 bit GPU-like accelerator

> |In order to meet the HL-LHC computing requirements, we need to use all available
computing resources, or cut back physics projections

- US funding agencies have indicated that we will not be able to get allocations if
our code does not make use of accelerator hardware

e C. Leggett 2019-09-26

|| The Challenge (Part IlI)

» HEP algorithms are not easily parallelized or offloadable to an accelerator
* very branchy
* not very many wide loops or opportunities for SIMD style decomposition

« EDM is C++ish. GPUs want arrays.
« don't want to transform data back and forth every data is offloaded

* |lots and lots of Algorithms / Modules
* death of a thousand cuts

» Most direct ports of HEP code to accelerators have been for the Online environment,
where the hardware requirements are known in advance, and the system parameters
are very well defined

 you pick and choose your hardware, and code to match
* you don't expect an upgrade cycle every 2 years

e C. Leggett 2019-09-26

>

>

The Challenge (Part IV)

We see all three flavours of ice cream in the next the DOE HPCs
 A21: Intel, Perimutter: NVidia , Frontier: AMD

Each accelerator vendor has its own flavour of programming tools to target their GPU
* NVidia: CUDA

* Intel: SYCL / OneAPI / dpcpp

« AMD: hip

Our software needs to run for the next 10+ years
« we cannot afford to re-write for each hardware platform

And what comes out in 5 years?
* we may see more “exotic” architectures (TPU, FPGA, ASIC)

What happens if a vendor significantly modifies their programming environment?
* eg AMD recently dropped SPIR support for hip/ROCm

-3
A
rrrrrrr ""|

Framework Integration

BERKELEY LAB

» Significant impedance mismatch:
* V100 has 160,000 threads

* Most of our loops are much less wide than that
* gang data between events to increase GPU workload?

> |t is likely that we will need to be able to schedule and execute concurrent kernels on
the GPU

« some support (eg CUDA streams), but not extensive and has significant performance
drawbacks

» currently significantly limits portability solutions
» this will (is promised) to change in the coming year

» Depending on how vendors implement synchronous vs asynchronous kernel
launching, may need to redesign parts of Athena / Gaudi framework

» currently we've implemented a synchronous mechanism, on the assumption that we can
re-task the CPU to do other work.

* this has been poorly implemented by the hardware (NVidia, Intel)

6 « asynchronous requires a callback (a la cmssw): incompatible with current Gaudi

Working Towards A Solution

We need to find a portable solution that works for all accelerator platforms

portability is more important than performance

» Projects worth exploring » Machine learning tools
« Kokkos * pytorch, tensorflow, etc
. Raja * requires major paradigm shift to use
» SYCL / OpenCL pervasively
. OpenMP * does map much better onto accelerators
» OpenACC * back-ends already there
o 277

» While some of these look good on paper, it is very important to understand how they
map onto our workflows and framework

something which works well for the online may not map onto the offline

» We need to encourage ($$%$) vendors to provide portability solutions
> We may need to develop these solutions ourselves if the vendors can’t deliver

fin

(time for discussion)

Gl SYCL Ecosystem

SYCL source code

(effort announced by Intel on 2019/01/11) aut

(non-standard macros required)

L
ay
.....llllllll
gunno®®

v,

¢

ComputeCpp triSYCL hipSYCL

A J

*
*
*

o

*e

* .
‘,.(experlmental!)

i *s(experimental!)
PTX devices %, Any CPU
*

v

OpenCL 1.2

Any CPU - pretty much anything
- NVIDIA GPUs 2, .)
nCL PIR(-V (with OpenMP)
) Gt
1 CPUSIGRU - Intel CPUs/GPUs Any CPU OpenCL + SPIR-df ROCm CUDA
- Inte s s AT R (with OpenMP) - pocl (CPUs, NVIDIA -AMD GPUs - NVIDIA GPUs
- other SPIR-V . GPUs)
devices? (depending on -
evices: driver stack) - Xilinx FPGAs
- ARM Mali

- Renesas R-Car

0 C. Leggett 2019-09-26

-3
A
s ‘"'l

BERKELEY LAB

» Somewhat less flexible than SYCL
 hard to explicitly dispatch kernels without use of a parallel_for-like construct
* need to identify back-end at compilation time

* no concurrent kernel execution at this time
* beta version that explicitly uses cuda streams

» Has important features that aren't in SYCL

* reduction construct
* child tasks
* more performant

» Support for Intel GPU and AMD not ready yet
* sometime next year

@ C. Leggett 2019-09-26

